Linear classifier design under heteroscedasticity in Linear Discriminant Analysis
نویسندگان
چکیده
Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for binary classification. In addition, we also propose a local neighbourhood search (LNS) algorithm to obtain a more robust classifier if the data is known to have a non-normal distribution. We evaluate the proposed classifiers on two artificial and ten real-world datasets that cut across a wide range of application areas including handwriting recognition, medical diagnosis and remote sensing, and then compare our algorithm against existing LDA approaches and other linear classifiers. The GLD is shown to outperform the original LDA procedure in terms of the classification accuracy under heteroscedasticity. While it compares favourably with other existing heteroscedastic LDA approaches, the GLD requires as much as 60 times lower training time on some datasets. Our comparison with the support vector machine (SVM) also shows that, the GLD, together with the LNS, requires as much as 150 times lower training time to achieve an equivalent classification accuracy on some of the datasets. Thus, our algorithms can provide a cheap and reliable option for classification in a lot of expert systems.
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملChernoff Dimensionality Reduction-Where Fisher Meets FKT
Well known linear discriminant analysis (LDA) based on the Fisher criterion is incapable of dealing with heteroscedasticity in data. However, in many practical applications we often encounter heteroscedastic data, i.e., within-class scatter matrices can not be expected to be equal. A technique based on the Chernoff criterion for linear dimensionality reduction has been proposed recently. The te...
متن کاملFrom classifiers to discriminators: A nearest neighbor rule induced discriminant analysis
The current discriminant analysis method design is generally independent of classifiers, thus the connection between discriminant analysis methods and classifiers is loose. This paper provides a way to design discriminant analysis methods that are bound with classifiers. We begin with a local mean based nearest neighbor (LM-NN) classifier and use its decision rule to supervise the design of a d...
متن کاملA Doppler-Based Target Classifier Using Linear Discriminants and Principal Components
This paper describes the design of the automatic target classifier which has been introduced into the AMSTAR Battlefield Surveillance Radar. It discusses the requirements which have driven the design of the classifier, the data which is used to make the classification, the choice of Linear Discriminant Analysis as one of the classification techniques used and the use of Principal Components Ana...
متن کاملError bounds for Kernel Fisher Linear Discriminant in Gaussian Hilbert space
We give a non-trivial, non-asymptotic upper bound on the classification error of the popular Kernel Fisher Linear Discriminant classifier under the assumption that the kernelinduced space is a Gaussian Hilbert space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 79 شماره
صفحات -
تاریخ انتشار 2017